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1 Solvability by Radicals and Integral Extensions

1.1 Solvability by radicals

Theorem 1.1. Let f ∈ F [x] be nonconstant with splitting field K of degree not divisible
by char(F ). Then K is solvable by radicals if and only if Gal(K/F ) is solvable.

Proof. Let n = [K : F ], let L = K(ζn), and let E = F (ζn), where 〈ζn〉 = µn. We claim
that K/F is solvable by radicals iff L/E is solvable by radicals. For ( =⇒ ), we adjoin the
same roots of unity. For ( ⇐= ), if L/E is solvable by radicals, then L/F is solvable by
radicals. Then K/F is solvable by radicals because K ⊆ L ⊆ Ks(ζn) (where Ks is as in
the definition of solvability by radicals).

Now Gal(L/E) ∼= Gal(K/K ∩ E) ≤ Gal(K/F ), so if Gal(K/F ) is solvable, then
Gal(L/E) is solvable. Conversely, since Gal(L/E) is solvable, and since Gal(K ∩ E/F ) ⊆
Gal(E/F ) is abelian, Gal(L/F ) solvable =⇒ Gal(K/F ) is solvable.

So we may assume that ζn ∈ F . Suppose K/F is solvable by radicals. There exists
L ⊇ L such that L/F is a radical extension. Exercise: we may choose L such that L/F is
Galois. (The idea for this is to show that the normal closure of L/F is still radical.) Tbe
Gal(L/F ) is salvable since we have fields F = L0 ⊆ L0 ⊆ L1 ⊆ · · · ⊆ Ls = L, such that
each Li/Li−1 is abelian, and Li/F is Galois.

Suppose Gal(K/F ) is solvable. Then there exist intermediate fields Ki/F which are
normal and Ks = K such that each Gal(Ki+1/Ki) is finite and abelian (given by adjoining
n-th roots of elements in the previous field). So K/F is solvable by radicals.

Corollary 1.1. If char(F ) - 6 and K is the splitting field of an irreducible polynomial of
degree ≤ 4, then K/F is solvable by radicals.

Why 4? This is because A5 is the smallest nonsolvable group.

Example 1.1. f = 2x5 − 10x + 5 has Galois group S5. It is irreducible by Eisenstein’s
criterion. It has 3 real roots.

1



1.2 Integral extensions

Let B be a commutative ring, and let A be a subring of B. B/A is an extension of
commutative rings.

Definition 1.1. We say β ∈ B is integral over A if β is the root of a monic polynomial
in A[x].

Example 1.2. Any element a ∈ A is integral over a, as it is the root of x− a.

Example 1.3. Let L/K be an extension of fields. If β is algebraic over K, then β is
integral over K , as it is the root of its minimal polynomial.

Example 1.4.
√

2 is integral over Z as the root of x2 − 2.

Example 1.5. (1−
√

5)/2 is integral over Z as the root of x2 − x− 1.

Example 1.6. 1/2 is not integral over Z. Let f =
∑n

i=1 aix
i with an = 1, ai ∈ Z. Then

f(1/2) ∈ (1/2)n + (1/2n−1)Z, so f(1/2) 6= 0.

Definition 1.2. β ∈ Q ⊆ C is an algebraic integer if it is integral over Z.

Definition 1.3. A number field is a finite extension of Q.

Proposition 1.1. Let β ∈ B. The following are equivalent.

1. β is integral over A.

2. There exists n ≥ 1 such that {1, β, . . . , βn−1} generates A[β] as an A-module.

3. A[β] is finitely generated as an A-module.

4. There exists an A[β]-submodule M of B that is finitely generated over A and faithful
(i.e. AnnA[β](M) = 0).

Proof. (1) =⇒ (2): There exists a monic f ∈ A[x] of degree n with f(β) = 0. Then
f(x) = xn +

∑n−1
i=1 a − i− 1xi, so βn = −

∑n−1
i=1 ai−1β

i ∈ A(1, β, . . . , βn−1). By recursion,
βm ∈ A(1, β, . . . , βn−1) for all M ≥ n. So A[β] is generated by {1, β, . . . , βn−1} as an
A-module.

(2) =⇒ (3): This is a special case.
(3) =⇒ (4): Let M = A[β]. Then AnnA[β](A[β]) = 0 since A[β] is free over A[β].
(4) =⇒ (1): M =

∑n
i=1Aγi ⊆ B for some γi ∈ B. Without loss of generality, suppose

β 6= 0. Then βγi =
∑n

j=1 ai,jγj , where ai,j ∈ A. So we can form a linear transformation
T : An → An by [T ]i,j = ai,j . Then f = cT (x). Since f(β) : M →M is 0 and M is faithful,
f(β) = 0.

Example 1.7. 1/2 ∈ Q is not integral over Z since Z[1/2] is not Z-finitely generated.
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Definition 1.4. B/A is an integral extension if eery β ∈ B is integral over A.

Example 1.8. Z[
√

2]/Z is an integral extension. It suffices to show that α = a + b
√

2 is
always the root of a polynomial. Take the polynomial x2 + 2az + (a2 − 2b2).

Example 1.9. Let B be a finitely generated A-module, and let M be a finitely generated
B-module. Then M is a finitely generated A-module.

Next time, we will prove the following.

Proposition 1.2. Let B = A[β1, . . . , βn]. The following are equivalent.

1. B is integral over A.

2. Each βi is integral over A.

3. B is finitely generated as an A-module.
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