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1 Solvability by Radicals and Integral Extensions

1.1 Solvability by radicals

Theorem 1.1. Let f € F|x] be nonconstant with splitting field K of degree not divisible
by char(F'). Then K is solvable by radicals if and only if Gal(K/F) is solvable.

Proof. Let n = [K : F|, let L = K((,), and let E = F((,), where ((,) = p,. We claim
that K/F is solvable by radicals iff L/E is solvable by radicals. For ( =), we adjoin the
same roots of unity. For ( <), if L/FE is solvable by radicals, then L/F is solvable by
radicals. Then K/F' is solvable by radicals because K C L C K4((,) (where K is as in
the definition of solvability by radicals).

Now Gal(L/F) = Gal(K/K N E) < Gal(K/F), so if Gal(K/F) is solvable, then
Gal(L/E) is solvable. Conversely, since Gal(L/FE) is solvable, and since Gal(K N E/F) C
Gal(E/F) is abelian, Gal(L/F') solvable = Gal(K/F) is solvable.

So we may assume that (, € F. Suppose K/F is solvable by radicals. There exists
L D L such that L/F is a radical extension. Exercise: we may choose L such that L/F is
Galois. (The idea for this is to show that the normal closure of L/F is still radical.) Tbe
Gal(L/F) is salvable since we have fields F = Ly C Ly C L; C --- C Ly = L, such that
each L;/L;_1 is abelian, and L;/F is Galois.

Suppose Gal(K/F) is solvable. Then there exist intermediate fields K;/F which are
normal and Ky = K such that each Gal(K;11/K;) is finite and abelian (given by adjoining
n-th roots of elements in the previous field). So K/F is solvable by radicals. O

Corollary 1.1. If char(F) t 6 and K is the splitting field of an irreducible polynomial of
degree < 4, then K/F is solvable by radicals.

Why 47 This is because Ay is the smallest nonsolvable group.

Example 1.1. f = 22° — 10z + 5 has Galois group Ss. It is irreducible by Eisenstein’s
criterion. It has 3 real roots.



1.2 Integral extensions

Let B be a commutative ring, and let A be a subring of B. B/A is an extension of
commutative rings.

Definition 1.1. We say 8 € B is integral over A if § is the root of a monic polynomial
in Alz].

Example 1.2. Any element a € A is integral over a, as it is the root of z — a.

Example 1.3. Let L/K be an extension of fields. If § is algebraic over K, then f is
integral over K , as it is the root of its minimal polynomial.

Example 1.4. /2 is integral over Z as the root of z2 — 2.
Example 1.5. (1 —/5)/2 is integral over Z as the root of 22 — x — 1.

Example 1.6. 1/2 is not integral over Z. Let f = Y ", a;z" with a,, = 1, a; € Z. Then
f(1/2) € (1/2)" + (1/2"1)Z, so0 f(1/2) # 0.

Definition 1.2. 8 € Q C C is an algebraic integer if it is integral over Z.
Definition 1.3. A number field is a finite extension of Q.
Proposition 1.1. Let 8 € B. The following are equivalent.
1. B is integral over A.
2. There exists n > 1 such that {1,,...,3"" '} generates A[B] as an A-module.
3. A[f] is finitely generated as an A-module.

4. There exists an A[f]-submodule M of B that is finitely generated over A and faithful
(i.e. Annypg (M) = 0).

Proof. (1) = (2): There exists a monic f 6 Alx] of degree n with f(8) = 0. Then
flz) =a™+ > La—i—1af so " = > “lai 8 e A1, B,..., 5" Y). By recursion,
g™ € A(1,B8,...,8" 1Y) for all M > n. So A[f] is generated by {1,43,...,8" '} as an
A-module.

(2) = (3): This is a special case.

(3) = (4): Let M = A[B]. Then Annyg(A[B]) = 0 since A[3] is free over A[3].

(4) = (1): M =3, Ay; C B for some ; € B. Without loss of generality, suppose
B # 0. Then Bv; = Z?Zl a; j7;, where a; ; € A. So we can form a linear transformation
T:A" — A" by [T);; = a;j. Then f = cp(x). Since f(f) : M — M is 0 and M is faithful,
7(8) =o. O

Example 1.7. 1/2 € Q is not integral over Z since Z[1/2] is not Z-finitely generated.



Definition 1.4. B/A is an integral extension if eery 8 € B is integral over A.

Example 1.8. Z[/2]/7Z is an integral extension. It suffices to show that o = a + bv/2 is
always the root of a polynomial. Take the polynomial 22 + 2az + (a? — 2b?).

Example 1.9. Let B be a finitely generated A-module, and let M be a finitely generated
B-module. Then M is a finitely generated A-module.

Next time, we will prove the following.

Proposition 1.2. Let B = A[f, ..., Bn]. The following are equivalent.
1. B is integral over A.
2. Each B; is integral over A.

3. B is finitely generated as an A-module.
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